Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Chempluschem ; 89(4): e202300508, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37847591

RESUMEN

Aqueous chemistry within carbonaceous planetesimals is promising for synthesizing prebiotic organic matter essential to all life. Meteorites derived from these planetesimals delivered these life building blocks to the early Earth, potentially facilitating the origins of life. Here, we studied the formation of vitamin B3 as it is an important precursor of the coenzyme NAD(P)(H), which is essential for the metabolism of all life as we know it. We propose a new reaction mechanism based on known experiments in the literature that explains the synthesis of vitamin B3. It combines the sugar precursors glyceraldehyde or dihydroxyacetone with the amino acids aspartic acid or asparagine in aqueous solution without oxygen or other oxidizing agents. We performed thermochemical equilibrium calculations to test the thermodynamic favorability. The predicted vitamin B3 abundances resulting from this new pathway were compared with measured values in asteroids and meteorites. We conclude that competition for reactants and decomposition by hydrolysis are necessary to explain the prebiotic content of meteorites. In sum, our model fits well into the complex network of chemical pathways active in this environment.

2.
Bioessays ; 44(9): e2200098, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35832007

RESUMEN

A closer look at Wilhelm Ostwald's articles that originally proposed the concept of autocatalysis reveals that he accepted reactants, not just products, as potential autocatalysts. Therefore, that a process is catalyzed by some of its products, which is the common definition of autocatalysis, is only a proper subset of what Ostwald meant by "Autokatalyse." As a result, it is necessary to reconsider the definition of autocatalysis, which is especially important for origins-of-life research because autocatalysis provides an abiotic mechanism that yields reproduction-like dynamics. Here, we translate and briefly review the two key publications on autocatalysis by Ostwald to revive his understanding of autocatalysis, and we introduce the concepts of recessive and expansive autocatalysis. Then we discuss the twofold significance of such a revival: first, facilitating the search for candidate processes underlying the origins of life, and second, updating our view of autocatalysis in complex reaction networks and metabolism.


Asunto(s)
Catálisis
3.
Life (Basel) ; 12(3)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35330155

RESUMEN

The origin of life might be sparked by the polymerization of the first RNA molecules in Darwinian ponds during wet-dry cycles. The key life-building block ribose was found in carbonaceous chondrites. Its exogenous delivery onto the Hadean Earth could be a crucial step toward the emergence of the RNA world. Here, we investigate the formation of ribose through a simplified version of the formose reaction inside carbonaceous chondrite parent bodies. Following up on our previous studies regarding nucleobases with the same coupled physico-chemical model, we calculate the abundance of ribose within planetesimals of different sizes and heating histories. We perform laboratory experiments using catalysts present in carbonaceous chondrites to infer the yield of ribose among all pentoses (5Cs) forming during the formose reaction. These laboratory yields are used to tune our theoretical model that can only predict the total abundance of 5Cs. We found that the calculated abundances of ribose were similar to the ones measured in carbonaceous chondrites. We discuss the possibilities of chemical decomposition and preservation of ribose and derived constraints on time and location in planetesimals. In conclusion, the aqueous formose reaction might produce most of the ribose in carbonaceous chondrites. Together with our previous studies on nucleobases, we found that life-building blocks of the RNA world could be synthesized inside parent bodies and later delivered onto the early Earth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...